

 Navigation

 	
 index

 	
 next |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Welcome to nova-dpm’s documentation!

On IBM z Systems and IBM LinuxOne machines, certain workloads run better in a
partition of the firmware-based PR/SM (Processor Resource/System Manager)
hypervisor, than in a virtual machine of a software hypervisor such as KVM or
z/VM.

This project provides a Nova virtualization driver for the PR/SM hypervisor of
IBM z Systems and IBM LinuxOne machines that are in the DPM (Dynamic Partition
Manager) administrative mode.

The DPM mode enables dynamic capabilities of the firmware-based PR/SM
hypervisor that are usually known from software-based hypervisors, such as
creation, deletion and modification of partitions (i.e. virtual machines) and
virtual devices within these partitions, and dynamic assignment of these
virtual devices to physical I/O adapters.

The z/VM and KVM hypervisors on z Systems and LinuxONE machines are supported
by separate Nova virtualization drivers:

	KVM is supported by the standard libvirt/KVM driver in the
openstack/nova [http://git.openstack.org/cgit/openstack/nova]
project.

	z/VM is supported by the z/VM driver in the
openstack/nova-zvm-virt-driver [http://git.openstack.org/cgit/openstack/nova-zvm-virt-driver]
project.

Overview

	Release Notes
	1.0.0

	Topology
	Topology for a single OpenStack cloud

	General Topology

	Interaction between OpenStack compute node and HMC

	Feature Support Matrix

Using the driver

	Installation

	Configuration

	DPM Guest Image Tools
	autoconfigure_networking

	setmac

Creating DPM Images

	Creating a qcow2 image for RHEL
	Precondition

	Update boot loader

	Installation of Cloud-init

	Add DPM-Guest Tools

	Cleanup

	Create qcow2 image

	Test qcow2 image

Contributing to the project

	Contributing

	Developer Guide
	Release Notes

	Nova-dpm specifications for Ocata
	Specification Template (Ocata release)

	Example Spec - The title of your blueprint

	Example Spec - The title of your blueprint

Links

	Documentation: http://nova-dpm.readthedocs.io/en/latest/

	Source: http://git.openstack.org/cgit/openstack/nova-dpm

	Github shadow: https://github.com/openstack/nova-dpm

	Bugs: http://bugs.launchpad.net/nova-dpm

	Gerrit: https://review.openstack.org/#/q/project:openstack/nova-dpm

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Release Notes

1.0.0

nova-dpm 1.0.0 is the first release of the Nova virtualization
driver for the PR/SM hypervisor of IBM z Systems and IBM LinuxOne
machines that are in the DPM (Dynamic Partition Manager)
administrative mode.

New Features

	Configure a compute node to manage and consume only
a subset of a z Systems CPC in DPM mode.

	CPC subsetting is hidden from users and they are treated
like normal hosts in OpenStack.

	Spawn instance from FCP volume.

	Instance lifecycle management.

	Use flat networking.

Known Issues

	VLAN and tunneled networks are not supported in this release.

	Cinder driver for Storwize V7000 Unified returns additional WWPN’s
which are tagged as NAS, which are used for internal connections.
The invalid target WWPN’s need to be blacklisted in nova
configuration parameters.

	Fibre Channel Multipathing is not supported.

	The configuration parameter [DEFAULT].host cannot be more than
17 characters in length.

	Networking: 12 ports per partition at the maximum.

	Networking: In the guest image, always port 0 of an network adapter gets
autoconfigured. If port 1 should be used, manually deconfigure port 0 and
configure port 1 in the operating system of the launched instance.

	Boot from image is not available. Boot from volume has to be used.

	Only a single fibre channel network is supported. Configured storage
adapters and cinder fibre channel backends must all use the same fibre
channel network.

	The configured maximum number of partitions ([dpm].max_instances)
is not yet enforced.

	All bug reports are listed at: https://bugs.launchpad.net/nova-dpm

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Topology

This section describes the topology between the OpenStack compute node for DPM,
the z Systems Hardware Management Console (HMC) and the managed machines
(CPCs).

Topology for a single OpenStack cloud

To keep it simple, we start with explaining the topology for a single OpenStack
cloud with compute nodes for DPM. The controller node is only shown as
a means to denote the OpenStack cloud.

The following entity-relationship diagram shows the entities related to
OpenStack compute nodes for DPM for a single OpenStack cloud.

The diagram presents multiplicities (cardinalities) on the relations using the
look-across semantics known from UML associations (e.g. The “1” on the left
side of the relation between controller node and compute node means that one
compute node is related to “1” controller node, and the “*” on the right side
of that relation means that one controller node is related to “*” (= 0 to N)
compute nodes.

+---------------------+ +-----------------------+
| | | |
| Controller Node | 1 * | Compute Node |
| (= OS cloud) +---------------+ for DPM |
| | | |
+---------------------+ +-----------+-----------+
 | 1
 |
 |
 | *
 +-----------+-----------+
 | |
 | Pair of: | 1
 | nova-compute (DPM) +----+
 | neutron-dpm-agent | |
 | | |
 +-----------+-----------+ |
 | * |
 | |
 | |
 | 1 |
 +-----+-----+ |
 | | |
 | HMC | |
 | | |
 +-----+-----+ |
 | 1 |
 | |
 | |
 | * |
 +-----+-----+ |
 | | |
 | CPC | |
 | (machine) | |
 | | |
 +-----+-----+ |
 | 1 |
 | |
 | |
 | * |
 +-------+-------+ |
 | | |
 | CPC subset | 1 |
 | (OS host) +--------+
 | |
 +-------+-------+
 | 1
 |
 |
 | *
 +-------+-------+
 | |
 | DPM partition |
 | (OS instance) |
 | |
 +---------------+

Explanation:

	The controller node is the management plane of the OpenStack cloud - it is
only shown to relate the compute nodes to an OpenStack cloud. It can run on
any (supported) operating system and hardware architecture.

	Within an OpenStack cloud, there can be many compute nodes for DPM (along
with compute nodes for other hypervisor types and hardware architectures).

	Each compute node for DPM can run the services for multiple OpenStack
“hosts”. For OpenStack, a “host” is a hypervisor instance that can run
multiple virtual systems (the OpenStack instances). The OpenStack instances
are DPM partitions on a CPC.

	An OpenStack host is established by defining a subset of a CPC. A CPC
subset is defined in the DPM-specific part of the Nova config files of its
compute node with the following characteristics:

	A maximum number of DPM partitions that can be created.

	A maximum number of physical CPUs that can be used.

	A maximum amount of physical memory that can be used.

The construct of a CPC subset limits the resources used for an OpenStack
host, ensuring that the OpenStack host cannot exhaust the resources of an
entire CPC. This allows other OpenStack hosts or non-OpenStack workload
to coexist on the same CPC.

	For each OpenStack host, the compute node needs a pair of:

	the nova-compute service for DPM (that is, with the nova-dpm virtualization
driver)

	the neutron-dpm-agent service

The multi-host capability at the level of the nova-compute service is not
exploited for DPM; multiple hosts are supported by having multiple pairs of
services.

	There is no need to run all pairs of nova-compute and neutron-dpm-agent
services on the same compute node; they can also be spread across multiple
compute nodes.

	The services on a compute node for DPM connect to an HMC over a network and
therefore the compute node can run on any (supported) operating system and
hardware architecture.

	The HMC can be duplicated into a primary and alternate HMC. In this OpenStack
release, the nova-compute service for DPM and the neutron-dpm-agent service
can be configured to connect to only one HMC.

	A particular HMC can manage multiple CPCs. Therefore, there may be multiple
pairs of nova-compute and neutron-dpm-agent services on possibly multiple
compute nodes connecting to the same or different HMCs, for managing
OpenStack hosts (CPC subsets) on the same or on different CPCs.

	Finally, the OpenStack host (CPC subset) powers the OpenStack instances (DPM
partitions), like on any other OpenStack Nova compute platform.

General Topology

The general case is nearly like the case of a single OpenStack cloud, except
that the compute nodes can now belong to different OpenStack clouds.

Interaction between OpenStack compute node and HMC

All interactions of OpenStack for DPM with an HMC go through a compute node for
DPM. On the compute node, the nova-dpm virtualization driver within the
nova-compute service and the neutron-dpm-agent service connect to the HMC.
These are the only OpenStack components that interface with the HMC.

The HMC supports a Web Services API that uses REST over HTTPS for client-driven
request/response style interactions, and JMS over STOMP for event-style
notifications.

The zhmcclient Python package is used to isolate the OpenStack code from the
details of the HMC Web Services API.

The following diagram shows how the OpenStack components on the compute node
use the zhmcclient package to connect to the HMC:

+--+
| Compute Node |
| |
| +---------------------------+ |
| | nova-compute service | |
| +---------------------------+ +---------------------------+ |
| | nova-dpm virt driver | | neutron-dpm-agent service | |
| +---------------------------+--+---------------------------+ |
| | zhmcclient | |
| +-----------------------+----------^-----------------------+ |
+--------------------------|----------|--------------------------+
 | |
 | |
 | REST | JMS
 | |
 | |
 +----v----------+----+
 | |
 | HMC |
 | |
 +--------------------+

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Feature Support Matrix

Warning

Please note, while this document is still being maintained, this is slowly
being updated to re-group and classify features.

When considering which capabilities should be marked as mandatory the
following general guiding principles were applied

	Inclusivity - people have shown ability to make effective
use of a wide range of virtualization technologies with broadly
varying featuresets. Aiming to keep the requirements as inclusive
as possible, avoids second-guessing what a user may wish to use
the cloud compute service for.

	Bootstrapping - a practical use case test is to consider that
starting point for the compute deploy is an empty data center
with new machines and network connectivity. The look at what
are the minimum features required of a compute service, in order
to get user instances running and processing work over the
network.

	Competition - an early leader in the cloud compute service space
was Amazon EC2. A sanity check for whether a feature should be
mandatory is to consider whether it was available in the first
public release of EC2. This had quite a narrow featureset, but
none the less found very high usage in many use cases. So it
serves to illustrate that many features need not be considered
mandatory in order to get useful work done.

	Reality - there are many virt drivers currently shipped with
Nova, each with their own supported feature set. Any feature which is
missing in at least one virt driver that is already in-tree, must
by inference be considered optional until all in-tree drivers
support it. This does not rule out the possibility of a currently
optional feature becoming mandatory at a later date, based on other
principles above.

Summary

	Feature
	Status
	IBM DPM

	Attach block volume to instance
	optional
	✖

	Detach block volume from instance
	optional
	✖

	Attach virtual network interface to instance
	optional
	✖

	Detach virtual network interface from instance
	optional
	✖

	Set the host in a maintenance mode
	optional
	✖

	Evacuate instances from a host
	optional
	✖

	Rebuild instance
	optional
	✖

	Guest instance status
	mandatory
	✔

	Guest host status
	optional
	✖

	Live migrate instance across hosts
	optional
	✖

	Force live migration to complete
	optional
	✖

	Launch instance
	mandatory
	✔

	Stop instance CPUs (pause)
	optional
	✖

	Reboot instance
	optional
	✔

	Rescue instance
	optional
	✖

	Resize instance
	optional
	✖

	Restore instance
	optional
	✖

	Service control
	optional
	✖

	Set instance admin password
	optional
	✖

	Save snapshot of instance disk
	optional
	✖

	Suspend instance
	optional
	✖

	Swap block volumes
	optional
	✖

	Shutdown instance
	mandatory
	✔

	Trigger crash dump
	optional
	✖

	Resume instance CPUs (unpause)
	optional
	✖

	Auto configure disk
	optional
	✖

	Instance disk I/O limits
	optional
	✖

	Config drive support
	choice
	✖

	Inject files into disk image
	optional
	✖

	Inject guest networking config
	optional
	✖

	Remote desktop over RDP
	choice
	✖

	View serial console logs
	choice
	✖

	Remote interactive serial console
	choice
	✖

	Remote desktop over SPICE
	choice
	✖

	Remote desktop over VNC
	choice
	✖

	Block storage support
	optional
	✔

	Block storage over fibre channel
	optional
	✔

	Block storage over iSCSI
	condition
	✖

	CHAP authentication for iSCSI
	optional
	✖

	Image storage support
	mandatory
	✔

	Network firewall rules
	optional
	✖

	Network routing
	optional
	✖

	Network security groups
	optional
	✖

	Flat networking
	choice
	✔

	VLAN networking
	choice
	✖

	uefi boot
	optional
	✖

Details

	Attach block volume to instanceStatus: optional. The attach volume operation provides a means to hotplug
additional block storage to a running instance. This allows
storage capabilities to be expanded without interruption of
service. In a cloud model it would be more typical to just
spin up a new instance with large storage, so the ability to
hotplug extra storage is for those cases where the instance
is considered to be more of a pet than cattle. Therefore
this operation is not considered to be mandatory to support.

CLI commands:
	nova volume-attach <server> <volume>

drivers:
	IBM DPM: missing

	Detach block volume from instanceStatus: optional. See notes for attach volume operation.

CLI commands:
	nova volume-detach <server> <volume>

drivers:
	IBM DPM: missing

	Attach virtual network interface to instanceStatus: optional. The attach interface operation provides a means to hotplug
additional interfaces to a running instance. Hotplug support
varies between guest OSes and some guests require a reboot for
new interfaces to be detected. This operation allows interface
capabilities to be expanded without interruption of service.
In a cloud model it would be more typical to just spin up a
new instance with more interfaces.

CLI commands:
	nova interface-attach <server>

drivers:
	IBM DPM: missing

	Detach virtual network interface from instanceStatus: optional. See notes for attach-interface operation.

CLI commands:
	nova interface-detach <server> <port_id>

drivers:
	IBM DPM: missing

	Set the host in a maintenance modeStatus: optional. This operation allows a host to be placed into maintenance
mode, automatically triggering migration of any running
instances to an alternative host and preventing new
instances from being launched. This is not considered
to be a mandatory operation to support.
The driver methods to implement are “host_maintenance_mode” and
“set_host_enabled”.

CLI commands:
	nova host-update <host>

drivers:
	IBM DPM: missing

	Evacuate instances from a hostStatus: optional. A possible failure scenario in a cloud environment is the outage
of one of the compute nodes. In such a case the instances of the down
host can be evacuated to another host. It is assumed that the old host
is unlikely ever to be powered back on, otherwise the evacuation
attempt will be rejected. When the instances get moved to the new
host, their volumes get re-attached and the locally stored data is
dropped. That happens in the same way as a rebuild.
This is not considered to be a mandatory operation to support.

CLI commands:
	nova evacuate <server>

	nova host-evacuate <host>

drivers:
	IBM DPM: missing

	Rebuild instanceStatus: optional. A possible use case is additional attributes need to be set
to the instance, nova will purge all existing data from the system
and remakes the VM with given information such as ‘metadata’ and
‘personalities’. Though this is not considered to be a mandatory
operation to support.

CLI commands:
	nova rebuild <server> <image>

drivers:
	IBM DPM: missing

	Guest instance statusStatus: mandatory. Provides a quick report on information about the guest instance,
including the power state, memory allocation, CPU allocation, number
of vCPUs and cummulative CPU execution time. As well as being
informational, the power state is used by the compute manager for
tracking changes in guests. Therefore this operation is considered
mandatory to support.

drivers:
	IBM DPM: complete

	Guest host statusStatus: optional. Unclear what this refers to

drivers:
	IBM DPM: missing

	Live migrate instance across hostsStatus: optional. Live migration provides a way to move an instance off one
compute host, to another compute host. Administrators may use
this to evacuate instances from a host that needs to undergo
maintenance tasks, though of course this may not help if the
host is already suffering a failure. In general instances are
considered cattle rather than pets, so it is expected that an
instance is liable to be killed if host maintenance is required.
It is technically challenging for some hypervisors to provide
support for the live migration operation, particularly those
built on the container based virtualization. Therefore this
operation is not considered mandatory to support.

CLI commands:
	nova live-migration <server>

	nova host-evacuate-live <host>

drivers:
	IBM DPM: missing

	Force live migration to completeStatus: optional. Live migration provides a way to move a running instance to another
compute host. But it can sometimes fail to complete if an instance has
a high rate of memory or disk page access.
This operation provides the user with an option to assist the progress
of the live migration. The mechanism used to complete the live
migration depends on the underlying virtualization subsystem
capabilities. If libvirt/qemu is used and the post-copy feature is
available and enabled then the force complete operation will cause
a switch to post-copy mode. Otherwise the instance will be suspended
until the migration is completed or aborted.

CLI commands:
	nova live-migration-force-complete <server> <migration>

drivers:
	IBM DPM: missing

	Launch instanceStatus: mandatory. Importing pre-existing running virtual machines on a host is
considered out of scope of the cloud paradigm. Therefore this
operation is mandatory to support in drivers.

drivers:
	IBM DPM: complete

	Stop instance CPUs (pause)Status: optional. Stopping an instances CPUs can be thought of as roughly
equivalent to suspend-to-RAM. The instance is still present
in memory, but execution has stopped. The problem, however,
is that there is no mechanism to inform the guest OS that
this takes place, so upon unpausing, its clocks will no
longer report correct time. For this reason hypervisor vendors
generally discourage use of this feature and some do not even
implement it. Therefore this operation is considered optional
to support in drivers.

CLI commands:
	nova pause <server>

drivers:
	IBM DPM: missing

	Reboot instanceStatus: optional. It is reasonable for a guest OS administrator to trigger a
graceful reboot from inside the instance. A host initiated
graceful reboot requires guest co-operation and a non-graceful
reboot can be achieved by a combination of stop+start. Therefore
this operation is considered optional.

CLI commands:
	nova reboot <server>

drivers:
	IBM DPM: completePlease note that this is will always be a hard reboot,
as the hypervisor doesn’t support soft reboots.

	Rescue instanceStatus: optional. The rescue operation starts an instance in a special
configuration whereby it is booted from an special root
disk image. The goal is to allow an administrator to
recover the state of a broken virtual machine. In general
the cloud model considers instances to be cattle, so if
an instance breaks the general expectation is that it be
thrown away and a new instance created. Therefore this
operation is considered optional to support in drivers.

CLI commands:
	nova rescue <server>

drivers:
	IBM DPM: missing

	Resize instanceStatus: optional. The resize operation allows the user to change a running
instance to match the size of a different flavor from the one
it was initially launched with. There are many different
flavor attributes that potentially need to be updated. In
general it is technically challenging for a hypervisor to
support the alteration of all relevant config settings for a
running instance. Therefore this operation is considered
optional to support in drivers.

CLI commands:
	nova resize <server> <flavor>

drivers:
	IBM DPM: missing

	Restore instanceStatus: optional. See notes for the suspend operation

CLI commands:
	nova resume <server>

drivers:
	IBM DPM: missing

	Service controlStatus: optional. Something something, dark side, something something.
Hard to claim this is mandatory when no one seems to know
what “Service control” refers to in the context of virt
drivers.

drivers:
	IBM DPM: missing

	Set instance admin passwordStatus: optional. Provides a mechanism to (re)set the password of the administrator
account inside the instance operating system. This requires that the
hypervisor has a way to communicate with the running guest operating
system. Given the wide range of operating systems in existence it is
unreasonable to expect this to be practical in the general case. The
configdrive and metadata service both provide a mechanism for setting
the administrator password at initial boot time. In the case where this
operation were not available, the administrator would simply have to
login to the guest and change the password in the normal manner, so
this is just a convenient optimization. Therefore this operation is
not considered mandatory for drivers to support.

CLI commands:
	nova set-password <server>

drivers:
	IBM DPM: missing

	Save snapshot of instance diskStatus: optional. The snapshot operation allows the current state of the
instance root disk to be saved and uploaded back into the
glance image repository. The instance can later be booted
again using this saved image. This is in effect making
the ephemeral instance root disk into a semi-persistent
storage, in so much as it is preserved even though the guest
is no longer running. In general though, the expectation is
that the root disks are ephemeral so the ability to take a
snapshot cannot be assumed. Therefore this operation is not
considered mandatory to support.

CLI commands:
	nova image-create <server> <name>

drivers:
	IBM DPM: missing

	Suspend instanceStatus: optional. Suspending an instance can be thought of as roughly
equivalent to suspend-to-disk. The instance no longer
consumes any RAM or CPUs, with its live running state
having been preserved in a file on disk. It can later
be restored, at which point it should continue execution
where it left off. As with stopping instance CPUs, it suffers from the fact
that the guest OS will typically be left with a clock that
is no longer telling correct time. For container based
virtualization solutions, this operation is particularly
technically challenging to implement and is an area of
active research. This operation tends to make more sense
when thinking of instances as pets, rather than cattle,
since with cattle it would be simpler to just terminate
the instance instead of suspending. Therefore this operation
is considered optional to support.

CLI commands:
	nova suspend <server>

drivers:
	IBM DPM: missing

	Swap block volumesStatus: optional. The swap volume operation is a mechanism for changing a running
instance so that its attached volume(s) are backed by different
storage in the host. An alternative to this would be to simply
terminate the existing instance and spawn a new instance with the
new storage. In other words this operation is primarily targeted towards
the pet use case rather than cattle, however, it is required for volume
migration to work in the volume service. This is considered optional to
support.

CLI commands:
	nova volume-update <server> <attachment> <volume>

drivers:
	IBM DPM: missing

	Shutdown instanceStatus: mandatory. The ability to terminate a virtual machine is required in
order for a cloud user to stop utilizing resources and thus
avoid indefinitely ongoing billing. Therefore this operation
is mandatory to support in drivers.

CLI commands:
	nova delete <server>

drivers:
	IBM DPM: complete

	Trigger crash dumpStatus: optional. The trigger crash dump operation is a mechanism for triggering
a crash dump in an instance. The feature is typically implemented by
injecting an NMI (Non-maskable Interrupt) into the instance. It provides
a means to dump the production memory image as a dump file which is useful
for users. Therefore this operation is considered optional to support.

drivers:
	IBM DPM: missing

	Resume instance CPUs (unpause)Status: optional. See notes for the “Stop instance CPUs” operation

CLI commands:
	nova unpause <server>

drivers:
	IBM DPM: missing

	Auto configure diskStatus: optional. something something, dark side, something something.
Unclear just what this is about.

drivers:
	IBM DPM: missing

	Instance disk I/O limitsStatus: optional. The ability to set rate limits on virtual disks allows for
greater performance isolation between instances running on the
same host storage. It is valid to delegate scheduling of I/O
operations to the hypervisor with its default settings, instead
of doing fine grained tuning. Therefore this is not considered
to be an mandatory configuration to support.

CLI commands:
	nova limits

drivers:
	IBM DPM: missing

	Config drive supportStatus: choice(guest.setup). The config drive provides an information channel into
the guest operating system, to enable configuration of the
administrator password, file injection, registration of
SSH keys, etc. Since cloud images typically ship with all
login methods locked, a mechanism to set the administrator
password of keys is required to get login access. Alternatives
include the metadata service and disk injection. At least one
of the guest setup mechanisms is required to be supported by
drivers, in order to enable login access.

drivers:
	IBM DPM: missing

	Inject files into disk imageStatus: optional. This allows for the end user to provide data for multiple
files to be injected into the root filesystem before an instance
is booted. This requires that the compute node understand the
format of the filesystem and any partitioning scheme it might
use on the block device. This is a non-trivial problem considering
the vast number of filesystems in existence. The problem of injecting
files to a guest OS is better solved by obtaining via the metadata
service or config drive. Therefore this operation is considered
optional to support.

drivers:
	IBM DPM: missing

	Inject guest networking configStatus: optional. This allows for static networking configuration (IP
address, netmask, gateway and routes) to be injected directly
into the root filesystem before an instance is booted. This
requires that the compute node understand how networking is
configured in the guest OS which is a non-trivial problem
considering the vast number of operating system types. The
problem of configuring networking is better solved by DHCP
or by obtaining static config via
config drive. Therefore this operation is considered optional
to support.

drivers:
	IBM DPM: missingOnly DHCP is supported.

	Remote desktop over RDPStatus: choice(console). This allows the administrator to interact with the graphical
console of the guest OS via RDP. This provides a way to see boot
up messages and login to the instance when networking configuration
has failed, thus preventing a network based login. Some operating
systems may prefer to emit messages via the serial console for
easier consumption. Therefore support for this operation is not
mandatory, however, a driver is required to support at least one
of the listed console access operations.

CLI commands:
	nova get-rdp-console <server> <console-type>

drivers:
	IBM DPM: missing

	View serial console logsStatus: choice(console). This allows the administrator to query the logs of data
emitted by the guest OS on its virtualized serial port. For
UNIX guests this typically includes all boot up messages and
so is useful for diagnosing problems when an instance fails
to successfully boot. Not all guest operating systems will be
able to emit boot information on a serial console, others may
only support graphical consoles. Therefore support for this
operation is not mandatory, however, a driver is required to
support at least one of the listed console access operations.

drivers:
	IBM DPM: missing

	Remote interactive serial consoleStatus: choice(console). This allows the administrator to interact with the serial
console of the guest OS. This provides a way to see boot
up messages and login to the instance when networking configuration
has failed, thus preventing a network based login. Not all guest
operating systems will be able to emit boot information on a serial
console, others may only support graphical consoles. Therefore support
for this operation is not mandatory, however, a driver is required to
support at least one of the listed console access operations.
This feature was introduced in the Juno release with blueprint
https://blueprints.launchpad.net/nova/+spec/serial-ports

CLI commands:
	nova get-serial-console <server>

drivers:
	IBM DPM: missing

	Remote desktop over SPICEStatus: choice(console). This allows the administrator to interact with the graphical
console of the guest OS via SPICE. This provides a way to see boot
up messages and login to the instance when networking configuration
has failed, thus preventing a network based login. Some operating
systems may prefer to emit messages via the serial console for
easier consumption. Therefore support for this operation is not
mandatory, however, a driver is required to support at least one
of the listed console access operations.

CLI commands:
	nova get-spice-console <server> <console-type>

drivers:
	IBM DPM: missing

	Remote desktop over VNCStatus: choice(console). This allows the administrator to interact with the graphical
console of the guest OS via VNC. This provides a way to see boot
up messages and login to the instance when networking configuration
has failed, thus preventing a network based login. Some operating
systems may prefer to emit messages via the serial console for
easier consumption. Therefore support for this operation is not
mandatory, however, a driver is required to support at least one
of the listed console access operations.

CLI commands:
	nova get-vnc-console <server> <console-type>

drivers:
	IBM DPM: missing

	Block storage supportStatus: optional. Block storage provides instances with direct attached
virtual disks that can be used for persistent storage of data.
As an alternative to direct attached disks, an instance may
choose to use network based persistent storage. OpenStack provides
object storage via the Swift service, or a traditional filesystem
such as NFS/GlusterFS may be used. Some types of instances may
not require persistent storage at all, being simple transaction
processing systems reading requests & sending results to and from
the network. Therefore support for this configuration is not
considered mandatory for drivers to support.

drivers:
	IBM DPM: complete

	Block storage over fibre channelStatus: optional. To maximise performance of the block storage, it may be desirable
to directly access fibre channel LUNs from the underlying storage
technology on the compute hosts. Since this is just a performance
optimization of the I/O path it is not considered mandatory to support.

drivers:
	IBM DPM: complete

	Block storage over iSCSIStatus: condition(storage.block==missing). If the driver wishes to support block storage, it is common to
provide an iSCSI based backend to access the storage from cinder.
This isolates the compute layer for knowledge of the specific storage
technology used by Cinder, albeit at a potential performance cost due
to the longer I/O path involved. If the driver chooses to support
block storage, then this is considered mandatory to support, otherwise
it is considered optional.

drivers:
	IBM DPM: missing

	CHAP authentication for iSCSIStatus: optional. If accessing the cinder iSCSI service over an untrusted LAN it
is desirable to be able to enable authentication for the iSCSI
protocol. CHAP is the commonly used authentication protocol for
iSCSI. This is not considered mandatory to support. (?)

drivers:
	IBM DPM: missing

	Image storage supportStatus: mandatory. This refers to the ability to boot an instance from an image
stored in the glance image repository. Without this feature it
would not be possible to bootstrap from a clean environment, since
there would be no way to get block volumes populated and reliance
on external PXE servers is out of scope. Therefore this is considered
a mandatory storage feature to support.

CLI commands:
	nova boot --image <image> <name>

drivers:
	IBM DPM: partialThe image needs to be deployed into a volume first.
As the system z DPM machine doesn’t provide local storage, booting from
image, which gets downloaded to local storage first, is not supported.

	Network firewall rulesStatus: optional. Unclear how this is different from security groups

drivers:
	IBM DPM: missing

	Network routingStatus: optional. Unclear what this refers to

drivers:
	IBM DPM: missing

	Network security groupsStatus: optional. The security groups feature provides a way to define rules
to isolate the network traffic of different instances running
on a compute host. This would prevent actions such as MAC and
IP address spoofing, or the ability to setup rogue DHCP servers.
In a private cloud environment this may be considered to be a
superfluous requirement. Therefore this is considered to be an
optional configuration to support.

drivers:
	IBM DPM: missing

	Flat networkingStatus: choice(networking.topology). Provide network connectivity to guests using a
flat topology across all compute nodes. At least one
of the networking configurations is mandatory to
support in the drivers.

drivers:
	IBM DPM: complete

	VLAN networkingStatus: choice(networking.topology). Provide network connectivity to guests using VLANs
to define the topology. At least one of the networking
configurations is mandatory to support in the drivers.

drivers:
	IBM DPM: missingA config driver, which is not yet supported, is
a prerequisite for that.

	uefi bootStatus: optional. This allows users to boot a guest with uefi firmware.

drivers:
	IBM DPM: missing

Notes

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Installation

The nova-dpm virtualization driver must be installed on every OpenStack compute
node for DPM.

This section describes the manual installation of the nova-dpm driver onto a
compute node that has already been installed by some means.

The nova-dpm virtualization driver is released on PyPI as package nova-dpm [https://pypi.python.org/pypi/nova-dpm].

The following table indicates which version of the nova-dpm package on PyPI to
use for a particular OpenStack release:

	OpenStack release
	nova-dpm version

	Ocata
	1.x.x

Typically, the nova-dpm package will increase its major version number by one
for each new OpenStack release.

If you want to install the package for a particular OpenStack release,
it is recommended to use the packages that have been released to PyPI, rather
than installing from a particular branch of a Git repository.

To do that, identify the major version number for the desired OpenStack release
from the table above, and install the latest minor and fix version of the
package for that major version, also specifying the global upper constraints
file for the desired OpenStack release (the latter ensures that you get the
right versions of any dependent packages).

For example, for Ocata:

$ constraints_file=https://git.openstack.org/cgit/openstack/requirements/plain/upper-constraints.txt?h=stable/ocata
$ pip install -c$constraints_file "nova-dpm >=1,<2"

If you have good reasons to install the latest not yet released fix level of
the nova-dpm package for a particular (released) OpenStack release, install
the nova-dpm package from the stable branch of the GitHub repo for that
OpenStack release:

For example, for Ocata:

$ constraints_file=https://git.openstack.org/cgit/openstack/requirements/plain/upper-constraints.txt?h=stable/ocata
$ pip install -c$constraints_file git+https://git.openstack.org/openstack/nova-dpm@stable/ocata

If you are a developer and want to install the latest code of the nova-dpm
package for the OpenStack release that is in development:

$ constraints_file=https://git.openstack.org/cgit/openstack/requirements/plain/upper-constraints.txt?h=master
$ pip install -c$constraints_file git+https://git.openstack.org/openstack/nova-dpm@master

The pip commands above install the packages into the currently active Python
environment.

If your active Python environment is a virtual Python environment, the
commands above can be issued from a userid without sudo rights.

If you need to install the packages into the system Python environment, you
need sudo rights:

$ sudo pip install ...

After installing the nova-dpm driver, proceed with its Configuration.

Note that you will also need to install and configure the networking-dpm
package on the compute node. For its documentation, see
http://networking-dpm.readthedocs.io/en/latest/.

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Configuration

The following is a sample nova_dpm.conf configuration file for the nova-dpm
driver, for adaptation and use.

It is auto-generated from the nova-dpm project when this documentation is
built, so if you are having issues with an option, please compare your version
of the nova-dpm Python package with the version of this documentation.

The sample configuration can also be viewed in
file form.

[DEFAULT]

[dpm]
#
Configuration options for IBM z Systems and IBM LinuxONE in DPM (Dynamic
Partition Manager) administrative mode. A z Systems or LinuxONE machine is
termed "CPC" (Central Processor Complex). The CPCs are managed via the Web
Services API exposed by the "HMC" (Hardware Management Console). One HMC can
manage multiple CPCs.
#
#
DPM config options for the Nova compute service (one for each OpenStack
hypervisor host) specify the target CPC, the HMC managing it, and limits on
the
resource usage on the target CPC. These limits ensure that only a subset of
the
target CPC is used for the OpenStack hypervisor host. To use the Nova driver
for DPM, the `[DEFAULT].compute_driver` config option needs to be set to the
value `dpm.DPMDriver`.

#
From nova_dpm
#

#
Maximum number of shared physical IFL processors on the target CPC that
can
be used for this OpenStack hypervisor host (integer value)
#max_processors = <None>

#
Maximum amount of memory (in MiB) on the target CPC that can be used for
this OpenStack hypervisor host (integer value)
#max_memory = <None>

#
Maximum number of instances (partitions) that can be created for this
OpenStack hypervisor host (integer value)
#max_instances = <None>

#
Physical storage adapter with port details for hba creation (multi valued)
#physical_storage_adapter_mappings =

#
list of target/remote wwpns can be used for example to exclude NAS/file
WWPNs returned by the V7000 Unified. (list value)
#target_wwpn_ignore_list =

#
Hostname or IP address of the HMC that manages the target CPC (string
value)
#hmc = <None>

#
User name for connection to the HMC (string value)
#hmc_username = <None>

#
Password for connection to the HMC (string value)
#hmc_password = <None>

#
DPM Object-id of the target CPC (string value)
#cpc_object_id = <None>

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

DPM Guest Image Tools

The DPM Guest Image Tools must be installed within a DPM OpenStack image.
The purpose of the tools are to dynamically configure the network interfaces.

Doing IP configuration is not part of the tools. This is handled like usual
with cloud-init.

autoconfigure_networking

Description

Is used to configure all network interfaces that are listed in the kernels
cmdline /proc/cmdline with the given adapter port. All interfaces are
configured in layer2 mode.

The format of the data in the cmdline must be

<devno>,<port>[,<mac>];

Example

0001,1,0a0000000011;0004,0;

This will result in

	0001 being configured with port 1

	0004 being configured with port 0

Content

	systemd service autoconfigure_networking.service

	shell script autoconfigure_networking.sh

Trigger

The systemd service autoconfigure_networking.service is configured to
run before cloud-init during boot. It’s job is to trigger the shell script.

Manual execution of the shell script

/usr/bin/autoconfigure_networking.sh

Installation

	Place the following files in the guest image

	dpm_guest_tools/usr/bin/autoconfigure_networking.sh

-> /usr/bin/autoconfigure_networking.sh

	dpm_guest_tools/usr/lib/systemd/system/autoconfigure_networking.service

-> /usr/lib/systemd/systemd/autoconfigure_networking.service

	Ensure permissions

chmod 644 /usr/lib/systemd/system/autoconfigure_networking.service

	Enable the service for autostart

	systemctl enable autoconfigure_networking.service

setmac

Description

Is used to reconfigure the MAC address of a network interface. The mapping
must be provided via the kernels cmdline /proc/cmdline.

The format of the data in the cmdline must be

<devno>,<portno>,<mac>;

Example

0001,1,0a0000000011;0004,0;

	0001: corresponding interface will be set to mac 0a:00:00:00:00:11

	0004: mac will not be changed

Content

	shell script setmac.sh

	udev rule 80-setmac.rules

Trigger

If a new network interface gets configured (e.g. for device 0.0.0001),
the udev rules triggers the shell script passing in the device-bus-id.

If a service instance for a certain device-bus-id already exists, it will not
get started again.

Manual execution of the shell script

/usr/bin/setmac.sh <dev-bus-id>

Installation

	Place the following files in the guest image

	dpm_guest_tools/usr/bin/setmac.sh

-> /usr/bin/setmac.sh

	dpm_guest_tools/etc/udev/rules.d/80-setmac.rules

-> /etc/udev/rules.d/80-setmac.rules

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Creating a qcow2 image for RHEL

This section explains the qcow2 image creation for RHEL.

Precondition

Partition with RHEL-7.3 installed and root user access

Update boot loader

	Go to /etc/zipl.conf and remove all occurrences of rd.zfcp=

	Add a new rd.zfcp entry

rd.zfcp=ipldev

	Empty /etc/zfcp.conf file

echo “” > /etc/zfcp.conf

	Create the dasd.conf file # In order to avoid error messages related to dasd configuration

touch /etc/dasd.conf

	Go to /usr/lib/dracut/modules.d/95zfcp/parse-zfcp.sh

Apply the following differences:

$ diff old_parse-zfcp.sh new_parse-zfcp.sh
8,9c8,10 < echo $zfcp_arg | grep '0\.[0-9a-fA-F]\.[0-9a-fA-F]\{4\},0x[0-9a-fA-F]\{16\},0x[0-9a-fA-F]\{16\}' >/dev/null
 < test $? -ne 0 && die "For argument 'rd.zfcp=$zfcp_arg'\nSorry, invalid format."
 --- > if ["$zfcp_arg" == "ipldev" -a "$(cat /sys/firmware/ipl/ipl_type)" == "fcp"] ; then
 > zfcp_arg="$(cat /sys/firmware/ipl/device),$(cat /sys/firmware/ipl/wwpn),$(cat /sys/firmware/ipl/lun)"
 > fi

The result should look like this:

#!/bin/sh
-*- mode: shell-script; indent-tabs-mode: nil; sh-basic-offset: 4; -*-
ex: ts=8 sw=4 sts=4 et filetype=sh

getargbool 1 rd.zfcp.conf -d -n rd_NO_ZFCPCONF || rm /etc/zfcp.conf

for zfcp_arg in $(getargs rd.zfcp -d 'rd_ZFCP='); do
 if ["$zfcp_arg" == "ipldev" -a "$(cat /sys/firmware/ipl/ipl_type)" == "fcp"] ; then
 zfcp_arg="$(cat /sys/firmware/ipl/device),$(cat /sys/firmware/ipl/wwpn),$(cat /sys/firmware/ipl/lun)"
 fi
 (
 IFS=","
 set $zfcp_arg
 echo "$@" >> /etc/zfcp.conf
)
done

zfcp_cio_free

	
	Rebuild the ramdisk

	dracut -f

	
	To apply the above changes to the contents of boot loader script

	zipl -V

Installation of Cloud-init

Add the RHEL7.3 yum repository

	Add the yum repository file that points to a network resource

cat <<EOT > /etc/yum.repos.d/rhel.repo
[RHEL7.3]
name=Red Hat Enterprise Linux Repository
baseurl=https://x.x.x.x
enabled=1
gpgcheck=0
EOT

Install cloud-init 0.7.9

Download latest cloud-init from https://launchpad.net/cloud-init/+download

	Install python setuptools

yum install python-setuptools

	Extract it

tar -xf cloud-init-0.7.9.tar.gz

	Enter the extracted directory

cd cloud-init-0.7.9

	Build and install it:

python setup.py build

python setup.py install –init-system systemd

Update cloud-init service files

	Remove Default dependencies

sed -i '/^\[Unit\]$/,/^\[/ s/^DefaultDependencies=no/#DefaultDependencies=no/' /usr/lib/systemd/system/cloud-init.service

sed -i '/^\[Unit\]$/,/^\[/ s/^DefaultDependencies=no/#DefaultDependencies=no/' /usr/lib/systemd/system/cloud-init-local.service

	Remove ordering for sysinit.target

sed -i '/^\[Unit\]$/,/^\[/ s/^Before=sysinit.target/#Before=sysinit.target/' /usr/lib/systemd/system/cloud-init.service

sed -i '/^\[Unit\]$/,/^\[/ s/^Before=sysinit.target/#Before=sysinit.target/' /usr/lib/systemd/system/cloud-init-local.service

	order with systemd-hostnamed.service

sed -i '/^\[Unit\]$/,/^\[/ s/^After=networking.service/After=networking.service\nAfter=systemd-hostnamed.service/' /usr/lib/systemd/system/cloud-init.service

The result should look like this:

cat /usr/lib/systemd/system/cloud-init.service

[Unit]
Description=Initial cloud-init job (metadata service crawler)
#DefaultDependencies=no
Wants=cloud-init-local.service
Wants=sshd-keygen.service
Wants=sshd.service
After=cloud-init-local.service
After=networking.service
After=systemd-hostnamed.service
Before=network-online.target
Before=sshd-keygen.service
Before=sshd.service
#Before=sysinit.target
Before=systemd-user-sessions.service
Conflicts=shutdown.target

[Service]
Type=oneshot
ExecStart=/usr/bin/cloud-init init
RemainAfterExit=yes
TimeoutSec=0

Output needs to appear in instance console output
StandardOutput=journal+console

[Install]
WantedBy=cloud-init.target

cat /usr/lib/systemd/system/cloud-init-local.service

[Unit]
Description=Initial cloud-init job (pre-networking)
#DefaultDependencies=no
Wants=network-pre.target
After=systemd-remount-fs.service
Before=NetworkManager.service
Before=network-pre.target
Before=shutdown.target
#Before=sysinit.target
Conflicts=shutdown.target
RequiresMountsFor=/var/lib/cloud

[Service]
Type=oneshot
ExecStart=/usr/bin/cloud-init init --local
ExecStart=/bin/touch /run/cloud-init/network-config-ready
RemainAfterExit=yes
TimeoutSec=0

Output needs to appear in instance console output
StandardOutput=journal+console

[Install]
WantedBy=cloud-init.target

Configure cloud-init for autostart

systemctl daemon-reload

systemctl enable cloud-init.service

systemctl enable cloud-init-local.service

systemctl enable cloud-final.service

systemctl enable cloud-config.service

Use the following cloud.cfg file

	Keep this cloud.cfg file in /etc/cloud/

The top level settings are used as module
and system configuration.

A set of users which may be applied and/or used by various modules
when a 'default' entry is found it will reference the 'default_user'
from the distro configuration specified below
users:
 - default

If this is set, 'root' will not be able to ssh in and they
will get a message to login instead as the above $user (ubuntu)
disable_root: false

This will cause the set+update hostname module to not operate (if true)
preserve_hostname: false

#datasource_list: [ConfigDrive, None]

Example datasource config
datasource:
Ec2:
metadata_urls: ['blah.com']
timeout: 5 # (defaults to 50 seconds)
max_wait: 10 # (defaults to 120 seconds)

The modules that run in the 'init' stage
cloud_init_modules:
 - migrator
- ubuntu-init-switch
 - seed_random
 - bootcmd
 - write-files
 - growpart
 - resizefs
 - disk_setup
 - mounts
 - set_hostname
 - update_hostname
 - update_etc_hosts
 - ca-certs
 - rsyslog
 - users-groups
 - ssh

The modules that run in the 'config' stage
cloud_config_modules:
Emit the cloud config ready event
this can be used by upstart jobs for 'start on cloud-config'.
 - emit_upstart
 - snap_config
 - ssh-import-id
 - locale
 - set-passwords
- grub-dpkg
- apt-pipelining
- apt-configure
 - ntp
 - timezone
 - disable-ec2-metadata
 - runcmd
 - byobu

The modules that run in the 'final' stage
cloud_final_modules:
 - snappy
 - package-update-upgrade-install
 - fan
 - landscape
 - lxd
 - puppet
 - chef
 - salt-minion
 - mcollective
 - rightscale_userdata
 - scripts-vendor
 - scripts-per-once
 - scripts-per-boot
 - scripts-per-instance
 - scripts-user
 - ssh-authkey-fingerprints
 - keys-to-console
 - phone-home
 - final-message
 - power-state-change

System and/or distro specific settings
(not accessible to handlers/transforms)
system_info:
 # This will affect which distro class gets used
 distro: rhel

Test-It

Run it once to see if things are working

cloud-init –init

Note

This might take a few minutes, as cloud-init tries to access various network datasources, which
probably are not available in your image build environment.But they should be available in your
OpenStack cloud. For debugging you might need to set “datasource_list: [ConfigDrive, None]” in cloud.cfg.
This excludes those network data sources and boot is pretty fast.

Add DPM-Guest Tools

	Install git and clone nova-dpm [https://github.com/openstack/nova-dpm.git] repository into the guest image.

git clone https://github.com/openstack/nova-dpm.git

	Copy the following files from nova-dpm directory into the guest image

cp nova-dpm/dpm_guest_tools/usr/bin/autoconfigure_networking.sh /usr/bin/autoconfigure_networking.sh

cp nova-dpm/dpm_guest_tools/usr/lib/systemd/system/autoconfigure_networking.service /usr/lib/systemd/system/autoconfigure_networking.service

cp nova-dpm/dpm_guest_tools/usr/bin/setmac.sh /usr/bin/setmac.sh

cp nova-dpm/dpm_guest_tools/etc/udev/rules.d/80-setmac.rules /etc/udev/rules.d/80-setmac.rules

	Ensure permissions

chmod 644 /usr/lib/systemd/system/autoconfigure_networking.service

	Enable the service for autostart

systemctl enable autoconfigure_networking.service

Cleanup

	Cleanup logs and journalctl

rm -rf /var/log/*

	Remove repo file and update repo

rm -f /etc/yum.repos.d/rhel.repo

yum clean all

yum update

yum repolist

	Remove data from last cloud-init run

rm -rf /var/lib/cloud/*

	Remove persistent mac address interface mappings

rm -f /etc/udev/rules.d/70-persistent-net.rules

	Remove persistent network configs

rm -f /etc/sysconfig/network-scripts/ifcfg-enc*

	Clear /etc/hostname

echo “” > /etc/hostname

	Cleanup home directory

rm -rf ~/*

Create qcow2 image

	In order to nullify space

dd if=/dev/zero of=~/tmpfile

rm -rf ~/tmpfile

	Now stop the partition and access the LUN used for image creation from other machine

	copy disk content byte-by-byte into a raw image

dd status=progress if=/path/to/installed/lun of=RHEL.img

	Convert this raw image to qcow

qemu-img convert -f raw -O qcow2 RHEL.img RHEL.qcow

Test qcow2 image

	Deploy this image on another LUN

qemu-img convert RHEL.qcow /path/to/new/lun

	Use this new LUN to boot the machine

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Contributing

If you would like to contribute to the development of the nova-dpm project, you
must follow the rules for OpenStack contributions described in the
“If you’re a developer, start here” section of this page:

http://wiki.openstack.org/HowToContribute

Once those steps have been completed, changes to the nova-dpm project should be
submitted for review via the Gerrit tool, following the workflow documented at:

http://wiki.openstack.org/GerritWorkflow

Pull requests submitted through GitHub will be ignored.

The Git repository for the nova-dpm project is here:

http://git.openstack.org/cgit/openstack/nova-dpm

Bugs against the nova-dpm project should be filed on Launchpad (not on GitHub):

https://bugs.launchpad.net/nova-dpm

Pending changes for the nova-dpm project can be seen on its Gerrit page:

https://review.openstack.org/#/q/project:openstack/nova-dpm

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Developer Guide

Release Notes

Guidelines

	Release note files MUST be part of the code changes which introduce the
noteworthy behavior change. Noteworthy behavior changes are:
	a deprecation of a config option

	a change of the default value of a config option

	the removal of a config option

	upgrade relevant actions (e.g. new required config options)

	security fixes

	When important bug fixes or features are done, release note files
COULD be part of those code changes.

How-To

To create a new release note:

$ reno --rel-notes-dir=doc/source/releasenotes/ new file-name-goes-here

To list existing release notes:

$ reno --rel-notes-dir=doc/source/releasenotes/ list .

To build the release notes:

$ tox -e docs

Note

If you build the release notes locally, please be aware that
reno only scans release note files (*.yaml) which are committed
in your local repository of this project.

More information about reno can be found at:
http://docs.openstack.org/developer/reno/index.html

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Nova-dpm specifications for Ocata

TODO: Figure out what to do with this page and its child pages.

Template:

	Specification Template (Ocata release)

Specs implemented in Ocata:

	Example Spec - The title of your blueprint

Specs approved (but not implemented) in Ocata:

	Example Spec - The title of your blueprint

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

 	Nova-dpm specifications for Ocata

Example Spec - The title of your blueprint

Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/nova/+spec/example

Introduction paragraph – why are we doing anything? A single paragraph of
prose that operators can understand. The title and this first paragraph
should be used as the subject line and body of the commit message
respectively.

Some notes about the nova-spec and blueprint process:

	Not all blueprints need a spec. For more information see
http://docs.openstack.org/developer/nova/devref/kilo.blueprints.html#when-is-a-blueprint-needed

	The aim of this document is first to define the problem we need to solve,
and second agree the overall approach to solve that problem.

	This is not intended to be extensive documentation for a new feature.
For example, there is no need to specify the exact configuration changes,

nor the exact details of any DB model changes. But you should still define
that such changes are required, and be clear on how that will affect
upgrades.

	You should aim to get your spec approved before writing your code.
While you are free to write prototypes and code before getting your spec
approved, its possible that the outcome of the spec review process leads
you towards a fundamentally different solution than you first envisaged.

	But, API changes are held to a much higher level of scrutiny.
As soon as an API change merges, we must assume it could be in production
somewhere, and as such, we then need to support that API change forever.
To avoid getting that wrong, we do want lots of details about API changes
upfront.

Some notes about using this template:

	Your spec should be in ReSTructured text, like this template.

	Please wrap text at 79 columns.

	The filename in the git repository should match the launchpad URL, for
example a URL of: https://blueprints.launchpad.net/nova/+spec/awesome-thing
should be named awesome-thing.rst

	Please do not delete any of the sections in this template. If you have
nothing to say for a whole section, just write: None

	For help with syntax, see http://sphinx-doc.org/rest.html

	To test out your formatting, build the docs using tox and see the generated
HTML file in doc/build/html/specs/<path_of_your_file>

	If you would like to provide a diagram with your spec, ascii diagrams are
required. http://asciiflow.com/ is a very nice tool to assist with making
ascii diagrams. The reason for this is that the tool used to review specs is
based purely on plain text. Plain text will allow review to proceed without
having to look at additional files which can not be viewed in gerrit. It
will also allow inline feedback on the diagram itself.

	If your specification proposes any changes to the Nova REST API such
as changing parameters which can be returned or accepted, or even
the semantics of what happens when a client calls into the API, then
you should add the APIImpact flag to the commit message. Specifications with
the APIImpact flag can be found with the following query:

https://review.openstack.org/#/q/status:open+project:openstack/nova-specs+message:apiimpact,n,z

Problem description

A detailed description of the problem. What problem is this blueprint
addressing?

Use Cases

What use cases does this address? What impact on actors does this change have?
Ensure you are clear about the actors in each use case: Developer, End User,
Deployer etc.

Proposed change

Here is where you cover the change you propose to make in detail. How do you
propose to solve this problem?

If this is one part of a larger effort make it clear where this piece ends. In
other words, what’s the scope of this effort?

At this point, if you would like to just get feedback on if the problem and
proposed change fit in nova, you can stop here and post this for review to get
preliminary feedback. If so please say:
Posting to get preliminary feedback on the scope of this spec.

Alternatives

What other ways could we do this thing? Why aren’t we using those? This doesn’t
have to be a full literature review, but it should demonstrate that thought has
been put into why the proposed solution is an appropriate one.

Data model impact

Changes which require modifications to the data model often have a wider impact
on the system. The community often has strong opinions on how the data model
should be evolved, from both a functional and performance perspective. It is
therefore important to capture and gain agreement as early as possible on any
proposed changes to the data model.

Questions which need to be addressed by this section include:

	What new data objects and/or database schema changes is this going to
require?

	What database migrations will accompany this change.

	How will the initial set of new data objects be generated, for example if you
need to take into account existing instances, or modify other existing data
describe how that will work.

REST API impact

Each API method which is either added or changed should have the following

	Specification for the method
	A description of what the method does suitable for use in
user documentation

	Method type (POST/PUT/GET/DELETE)

	Normal http response code(s)

	Expected error http response code(s)
	A description for each possible error code should be included
describing semantic errors which can cause it such as
inconsistent parameters supplied to the method, or when an
instance is not in an appropriate state for the request to
succeed. Errors caused by syntactic problems covered by the JSON
schema definition do not need to be included.

	URL for the resource
	URL should not include underscores, and use hyphens instead.

	Parameters which can be passed via the url

	JSON schema definition for the request body data if allowed
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	JSON schema definition for the response body data if any
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	Example use case including typical API samples for both data supplied
by the caller and the response

	Discuss any policy changes, and discuss what things a deployer needs to
think about when defining their policy.

Example JSON schema definitions can be found in the Nova tree
http://git.openstack.org/cgit/openstack/nova/tree/nova/api/openstack/compute/schemas

Note that the schema should be defined as restrictively as
possible. Parameters which are required should be marked as such and
only under exceptional circumstances should additional parameters
which are not defined in the schema be permitted (eg
additionaProperties should be False).

Reuse of existing predefined parameter types such as regexps for
passwords and user defined names is highly encouraged.

Security impact

Describe any potential security impact on the system. Some of the items to
consider include:

	Does this change touch sensitive data such as tokens, keys, or user data?

	Does this change alter the API in a way that may impact security, such as
a new way to access sensitive information or a new way to login?

	Does this change involve cryptography or hashing?

	Does this change require the use of sudo or any elevated privileges?

	Does this change involve using or parsing user-provided data? This could
be directly at the API level or indirectly such as changes to a cache layer.

	Can this change enable a resource exhaustion attack, such as allowing a
single API interaction to consume significant server resources? Some examples
of this include launching subprocesses for each connection, or entity
expansion attacks in XML.

For more detailed guidance, please see the OpenStack Security Guidelines as
a reference (https://wiki.openstack.org/wiki/Security/Guidelines). These
guidelines are a work in progress and are designed to help you identify
security best practices. For further information, feel free to reach out
to the OpenStack Security Group at openstack-security@lists.openstack.org.

Notifications impact

Please specify any changes to notifications. Be that an extra notification,
changes to an existing notification, or removing a notification.

Other end user impact

Aside from the API, are there other ways a user will interact with this
feature?

	Does this change have an impact on python-novaclient? What does the user
interface there look like?

Performance Impact

Describe any potential performance impact on the system, for example
how often will new code be called, and is there a major change to the calling
pattern of existing code.

Examples of things to consider here include:

	A periodic task might look like a small addition but if it calls conductor or
another service the load is multiplied by the number of nodes in the system.

	Scheduler filters get called once per host for every instance being created,
so any latency they introduce is linear with the size of the system.

	A small change in a utility function or a commonly used decorator can have a
large impacts on performance.

	Calls which result in a database queries (whether direct or via conductor)
can have a profound impact on performance when called in critical sections of
the code.

	Will the change include any locking, and if so what considerations are there
on holding the lock?

Other deployer impact

Discuss things that will affect how you deploy and configure OpenStack
that have not already been mentioned, such as:

	What config options are being added? Should they be more generic than
proposed (for example a flag that other hypervisor drivers might want to
implement as well)? Are the default values ones which will work well in
real deployments?

	Is this a change that takes immediate effect after its merged, or is it
something that has to be explicitly enabled?

	If this change is a new binary, how would it be deployed?

	Please state anything that those doing continuous deployment, or those
upgrading from the previous release, need to be aware of. Also describe
any plans to deprecate configuration values or features. For example, if we
change the directory name that instances are stored in, how do we handle
instance directories created before the change landed? Do we move them? Do
we have a special case in the code? Do we assume that the operator will
recreate all the instances in their cloud?

Developer impact

Discuss things that will affect other developers working on OpenStack,
such as:

	If the blueprint proposes a change to the driver API, discussion of how
other hypervisors would implement the feature is required.

Implementation

Assignee(s)

Who is leading the writing of the code? Or is this a blueprint where you’re
throwing it out there to see who picks it up?

If more than one person is working on the implementation, please designate the
primary author and contact.

	Primary assignee:

	<launchpad-id or None>

	Other contributors:

	<launchpad-id or None>

Work Items

Work items or tasks – break the feature up into the things that need to be
done to implement it. Those parts might end up being done by different people,
but we’re mostly trying to understand the timeline for implementation.

Dependencies

	Include specific references to specs and/or blueprints in nova, or in other
projects, that this one either depends on or is related to.

	If this requires functionality of another project that is not currently used
by Nova (such as the glance v2 API when we previously only required v1),
document that fact.

	Does this feature require any new library dependencies or code otherwise not
included in OpenStack? Or does it depend on a specific version of library?

Testing

Please discuss the important scenarios needed to test here, as well as
specific edge cases we should be ensuring work correctly. For each
scenario please specify if this requires specialized hardware, a full
openstack environment, or can be simulated inside the Nova tree.

Please discuss how the change will be tested. We especially want to know what
tempest tests will be added. It is assumed that unit test coverage will be
added so that doesn’t need to be mentioned explicitly, but discussion of why
you think unit tests are sufficient and we don’t need to add more tempest
tests would need to be included.

Is this untestable in gate given current limitations (specific hardware /
software configurations available)? If so, are there mitigation plans (3rd
party testing, gate enhancements, etc).

Documentation Impact

Which audiences are affected most by this change, and which documentation
titles on docs.openstack.org should be updated because of this change? Don’t
repeat details discussed above, but reference them here in the context of
documentation for multiple audiences. For example, the Operations Guide targets
cloud operators, and the End User Guide would need to be updated if the change
offers a new feature available through the CLI or dashboard. If a config option
changes or is deprecated, note here that the documentation needs to be updated
to reflect this specification’s change.

References

Please add any useful references here. You are not required to have any
reference. Moreover, this specification should still make sense when your
references are unavailable. Examples of what you could include are:

	Links to mailing list or IRC discussions

	Links to notes from a summit session

	Links to relevant research, if appropriate

	Related specifications as appropriate (e.g. if it’s an EC2 thing, link the
EC2 docs)

	Anything else you feel it is worthwhile to refer to

History

Optional section intended to be used each time the spec is updated to describe
new design, API or any database schema updated. Useful to let reader understand
what’s happened along the time.

Revisions

 Example Spec - The title of your blueprint

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

 	Nova-dpm specifications for Ocata

Example Spec - The title of your blueprint

Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/nova/+spec/example

Introduction paragraph – why are we doing anything? A single paragraph of
prose that operators can understand. The title and this first paragraph
should be used as the subject line and body of the commit message
respectively.

Some notes about the nova-spec and blueprint process:

	Not all blueprints need a spec. For more information see
http://docs.openstack.org/developer/nova/devref/kilo.blueprints.html#when-is-a-blueprint-needed

	The aim of this document is first to define the problem we need to solve,
and second agree the overall approach to solve that problem.

	This is not intended to be extensive documentation for a new feature.
For example, there is no need to specify the exact configuration changes,

nor the exact details of any DB model changes. But you should still define
that such changes are required, and be clear on how that will affect
upgrades.

	You should aim to get your spec approved before writing your code.
While you are free to write prototypes and code before getting your spec
approved, its possible that the outcome of the spec review process leads
you towards a fundamentally different solution than you first envisaged.

	But, API changes are held to a much higher level of scrutiny.
As soon as an API change merges, we must assume it could be in production
somewhere, and as such, we then need to support that API change forever.
To avoid getting that wrong, we do want lots of details about API changes
upfront.

Some notes about using this template:

	Your spec should be in ReSTructured text, like this template.

	Please wrap text at 79 columns.

	The filename in the git repository should match the launchpad URL, for
example a URL of: https://blueprints.launchpad.net/nova/+spec/awesome-thing
should be named awesome-thing.rst

	Please do not delete any of the sections in this template. If you have
nothing to say for a whole section, just write: None

	For help with syntax, see http://sphinx-doc.org/rest.html

	To test out your formatting, build the docs using tox and see the generated
HTML file in doc/build/html/specs/<path_of_your_file>

	If you would like to provide a diagram with your spec, ascii diagrams are
required. http://asciiflow.com/ is a very nice tool to assist with making
ascii diagrams. The reason for this is that the tool used to review specs is
based purely on plain text. Plain text will allow review to proceed without
having to look at additional files which can not be viewed in gerrit. It
will also allow inline feedback on the diagram itself.

	If your specification proposes any changes to the Nova REST API such
as changing parameters which can be returned or accepted, or even
the semantics of what happens when a client calls into the API, then
you should add the APIImpact flag to the commit message. Specifications with
the APIImpact flag can be found with the following query:

https://review.openstack.org/#/q/status:open+project:openstack/nova-specs+message:apiimpact,n,z

Problem description

A detailed description of the problem. What problem is this blueprint
addressing?

Use Cases

What use cases does this address? What impact on actors does this change have?
Ensure you are clear about the actors in each use case: Developer, End User,
Deployer etc.

Proposed change

Here is where you cover the change you propose to make in detail. How do you
propose to solve this problem?

If this is one part of a larger effort make it clear where this piece ends. In
other words, what’s the scope of this effort?

At this point, if you would like to just get feedback on if the problem and
proposed change fit in nova, you can stop here and post this for review to get
preliminary feedback. If so please say:
Posting to get preliminary feedback on the scope of this spec.

Alternatives

What other ways could we do this thing? Why aren’t we using those? This doesn’t
have to be a full literature review, but it should demonstrate that thought has
been put into why the proposed solution is an appropriate one.

Data model impact

Changes which require modifications to the data model often have a wider impact
on the system. The community often has strong opinions on how the data model
should be evolved, from both a functional and performance perspective. It is
therefore important to capture and gain agreement as early as possible on any
proposed changes to the data model.

Questions which need to be addressed by this section include:

	What new data objects and/or database schema changes is this going to
require?

	What database migrations will accompany this change.

	How will the initial set of new data objects be generated, for example if you
need to take into account existing instances, or modify other existing data
describe how that will work.

REST API impact

Each API method which is either added or changed should have the following

	Specification for the method
	A description of what the method does suitable for use in
user documentation

	Method type (POST/PUT/GET/DELETE)

	Normal http response code(s)

	Expected error http response code(s)
	A description for each possible error code should be included
describing semantic errors which can cause it such as
inconsistent parameters supplied to the method, or when an
instance is not in an appropriate state for the request to
succeed. Errors caused by syntactic problems covered by the JSON
schema definition do not need to be included.

	URL for the resource
	URL should not include underscores, and use hyphens instead.

	Parameters which can be passed via the url

	JSON schema definition for the request body data if allowed
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	JSON schema definition for the response body data if any
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	Example use case including typical API samples for both data supplied
by the caller and the response

	Discuss any policy changes, and discuss what things a deployer needs to
think about when defining their policy.

Example JSON schema definitions can be found in the Nova tree
http://git.openstack.org/cgit/openstack/nova/tree/nova/api/openstack/compute/schemas

Note that the schema should be defined as restrictively as
possible. Parameters which are required should be marked as such and
only under exceptional circumstances should additional parameters
which are not defined in the schema be permitted (eg
additionaProperties should be False).

Reuse of existing predefined parameter types such as regexps for
passwords and user defined names is highly encouraged.

Security impact

Describe any potential security impact on the system. Some of the items to
consider include:

	Does this change touch sensitive data such as tokens, keys, or user data?

	Does this change alter the API in a way that may impact security, such as
a new way to access sensitive information or a new way to login?

	Does this change involve cryptography or hashing?

	Does this change require the use of sudo or any elevated privileges?

	Does this change involve using or parsing user-provided data? This could
be directly at the API level or indirectly such as changes to a cache layer.

	Can this change enable a resource exhaustion attack, such as allowing a
single API interaction to consume significant server resources? Some examples
of this include launching subprocesses for each connection, or entity
expansion attacks in XML.

For more detailed guidance, please see the OpenStack Security Guidelines as
a reference (https://wiki.openstack.org/wiki/Security/Guidelines). These
guidelines are a work in progress and are designed to help you identify
security best practices. For further information, feel free to reach out
to the OpenStack Security Group at openstack-security@lists.openstack.org.

Notifications impact

Please specify any changes to notifications. Be that an extra notification,
changes to an existing notification, or removing a notification.

Other end user impact

Aside from the API, are there other ways a user will interact with this
feature?

	Does this change have an impact on python-novaclient? What does the user
interface there look like?

Performance Impact

Describe any potential performance impact on the system, for example
how often will new code be called, and is there a major change to the calling
pattern of existing code.

Examples of things to consider here include:

	A periodic task might look like a small addition but if it calls conductor or
another service the load is multiplied by the number of nodes in the system.

	Scheduler filters get called once per host for every instance being created,
so any latency they introduce is linear with the size of the system.

	A small change in a utility function or a commonly used decorator can have a
large impacts on performance.

	Calls which result in a database queries (whether direct or via conductor)
can have a profound impact on performance when called in critical sections of
the code.

	Will the change include any locking, and if so what considerations are there
on holding the lock?

Other deployer impact

Discuss things that will affect how you deploy and configure OpenStack
that have not already been mentioned, such as:

	What config options are being added? Should they be more generic than
proposed (for example a flag that other hypervisor drivers might want to
implement as well)? Are the default values ones which will work well in
real deployments?

	Is this a change that takes immediate effect after its merged, or is it
something that has to be explicitly enabled?

	If this change is a new binary, how would it be deployed?

	Please state anything that those doing continuous deployment, or those
upgrading from the previous release, need to be aware of. Also describe
any plans to deprecate configuration values or features. For example, if we
change the directory name that instances are stored in, how do we handle
instance directories created before the change landed? Do we move them? Do
we have a special case in the code? Do we assume that the operator will
recreate all the instances in their cloud?

Developer impact

Discuss things that will affect other developers working on OpenStack,
such as:

	If the blueprint proposes a change to the driver API, discussion of how
other hypervisors would implement the feature is required.

Implementation

Assignee(s)

Who is leading the writing of the code? Or is this a blueprint where you’re
throwing it out there to see who picks it up?

If more than one person is working on the implementation, please designate the
primary author and contact.

	Primary assignee:

	<launchpad-id or None>

	Other contributors:

	<launchpad-id or None>

Work Items

Work items or tasks – break the feature up into the things that need to be
done to implement it. Those parts might end up being done by different people,
but we’re mostly trying to understand the timeline for implementation.

Dependencies

	Include specific references to specs and/or blueprints in nova, or in other
projects, that this one either depends on or is related to.

	If this requires functionality of another project that is not currently used
by Nova (such as the glance v2 API when we previously only required v1),
document that fact.

	Does this feature require any new library dependencies or code otherwise not
included in OpenStack? Or does it depend on a specific version of library?

Testing

Please discuss the important scenarios needed to test here, as well as
specific edge cases we should be ensuring work correctly. For each
scenario please specify if this requires specialized hardware, a full
openstack environment, or can be simulated inside the Nova tree.

Please discuss how the change will be tested. We especially want to know what
tempest tests will be added. It is assumed that unit test coverage will be
added so that doesn’t need to be mentioned explicitly, but discussion of why
you think unit tests are sufficient and we don’t need to add more tempest
tests would need to be included.

Is this untestable in gate given current limitations (specific hardware /
software configurations available)? If so, are there mitigation plans (3rd
party testing, gate enhancements, etc).

Documentation Impact

Which audiences are affected most by this change, and which documentation
titles on docs.openstack.org should be updated because of this change? Don’t
repeat details discussed above, but reference them here in the context of
documentation for multiple audiences. For example, the Operations Guide targets
cloud operators, and the End User Guide would need to be updated if the change
offers a new feature available through the CLI or dashboard. If a config option
changes or is deprecated, note here that the documentation needs to be updated
to reflect this specification’s change.

References

Please add any useful references here. You are not required to have any
reference. Moreover, this specification should still make sense when your
references are unavailable. Examples of what you could include are:

	Links to mailing list or IRC discussions

	Links to notes from a summit session

	Links to relevant research, if appropriate

	Related specifications as appropriate (e.g. if it’s an EC2 thing, link the
EC2 docs)

	Anything else you feel it is worthwhile to refer to

History

Optional section intended to be used each time the spec is updated to describe
new design, API or any database schema updated. Useful to let reader understand
what’s happened along the time.

Revisions

 Example Spec - The title of your blueprint

 Navigation

 	
 index

 	
 previous |

 	nova-dpm 1.0.0.0rc3.dev3 documentation

 	Nova-dpm specifications for Ocata

Example Spec - The title of your blueprint

Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/nova/+spec/example

Introduction paragraph – why are we doing anything? A single paragraph of
prose that operators can understand. The title and this first paragraph
should be used as the subject line and body of the commit message
respectively.

Some notes about the nova-spec and blueprint process:

	Not all blueprints need a spec. For more information see
http://docs.openstack.org/developer/nova/devref/kilo.blueprints.html#when-is-a-blueprint-needed

	The aim of this document is first to define the problem we need to solve,
and second agree the overall approach to solve that problem.

	This is not intended to be extensive documentation for a new feature.
For example, there is no need to specify the exact configuration changes,

nor the exact details of any DB model changes. But you should still define
that such changes are required, and be clear on how that will affect
upgrades.

	You should aim to get your spec approved before writing your code.
While you are free to write prototypes and code before getting your spec
approved, its possible that the outcome of the spec review process leads
you towards a fundamentally different solution than you first envisaged.

	But, API changes are held to a much higher level of scrutiny.
As soon as an API change merges, we must assume it could be in production
somewhere, and as such, we then need to support that API change forever.
To avoid getting that wrong, we do want lots of details about API changes
upfront.

Some notes about using this template:

	Your spec should be in ReSTructured text, like this template.

	Please wrap text at 79 columns.

	The filename in the git repository should match the launchpad URL, for
example a URL of: https://blueprints.launchpad.net/nova/+spec/awesome-thing
should be named awesome-thing.rst

	Please do not delete any of the sections in this template. If you have
nothing to say for a whole section, just write: None

	For help with syntax, see http://sphinx-doc.org/rest.html

	To test out your formatting, build the docs using tox and see the generated
HTML file in doc/build/html/specs/<path_of_your_file>

	If you would like to provide a diagram with your spec, ascii diagrams are
required. http://asciiflow.com/ is a very nice tool to assist with making
ascii diagrams. The reason for this is that the tool used to review specs is
based purely on plain text. Plain text will allow review to proceed without
having to look at additional files which can not be viewed in gerrit. It
will also allow inline feedback on the diagram itself.

	If your specification proposes any changes to the Nova REST API such
as changing parameters which can be returned or accepted, or even
the semantics of what happens when a client calls into the API, then
you should add the APIImpact flag to the commit message. Specifications with
the APIImpact flag can be found with the following query:

https://review.openstack.org/#/q/status:open+project:openstack/nova-specs+message:apiimpact,n,z

Problem description

A detailed description of the problem. What problem is this blueprint
addressing?

Use Cases

What use cases does this address? What impact on actors does this change have?
Ensure you are clear about the actors in each use case: Developer, End User,
Deployer etc.

Proposed change

Here is where you cover the change you propose to make in detail. How do you
propose to solve this problem?

If this is one part of a larger effort make it clear where this piece ends. In
other words, what’s the scope of this effort?

At this point, if you would like to just get feedback on if the problem and
proposed change fit in nova, you can stop here and post this for review to get
preliminary feedback. If so please say:
Posting to get preliminary feedback on the scope of this spec.

Alternatives

What other ways could we do this thing? Why aren’t we using those? This doesn’t
have to be a full literature review, but it should demonstrate that thought has
been put into why the proposed solution is an appropriate one.

Data model impact

Changes which require modifications to the data model often have a wider impact
on the system. The community often has strong opinions on how the data model
should be evolved, from both a functional and performance perspective. It is
therefore important to capture and gain agreement as early as possible on any
proposed changes to the data model.

Questions which need to be addressed by this section include:

	What new data objects and/or database schema changes is this going to
require?

	What database migrations will accompany this change.

	How will the initial set of new data objects be generated, for example if you
need to take into account existing instances, or modify other existing data
describe how that will work.

REST API impact

Each API method which is either added or changed should have the following

	Specification for the method
	A description of what the method does suitable for use in
user documentation

	Method type (POST/PUT/GET/DELETE)

	Normal http response code(s)

	Expected error http response code(s)
	A description for each possible error code should be included
describing semantic errors which can cause it such as
inconsistent parameters supplied to the method, or when an
instance is not in an appropriate state for the request to
succeed. Errors caused by syntactic problems covered by the JSON
schema definition do not need to be included.

	URL for the resource
	URL should not include underscores, and use hyphens instead.

	Parameters which can be passed via the url

	JSON schema definition for the request body data if allowed
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	JSON schema definition for the response body data if any
	Field names should use snake_case style, not CamelCase or MixedCase
style.

	Example use case including typical API samples for both data supplied
by the caller and the response

	Discuss any policy changes, and discuss what things a deployer needs to
think about when defining their policy.

Example JSON schema definitions can be found in the Nova tree
http://git.openstack.org/cgit/openstack/nova/tree/nova/api/openstack/compute/schemas

Note that the schema should be defined as restrictively as
possible. Parameters which are required should be marked as such and
only under exceptional circumstances should additional parameters
which are not defined in the schema be permitted (eg
additionaProperties should be False).

Reuse of existing predefined parameter types such as regexps for
passwords and user defined names is highly encouraged.

Security impact

Describe any potential security impact on the system. Some of the items to
consider include:

	Does this change touch sensitive data such as tokens, keys, or user data?

	Does this change alter the API in a way that may impact security, such as
a new way to access sensitive information or a new way to login?

	Does this change involve cryptography or hashing?

	Does this change require the use of sudo or any elevated privileges?

	Does this change involve using or parsing user-provided data? This could
be directly at the API level or indirectly such as changes to a cache layer.

	Can this change enable a resource exhaustion attack, such as allowing a
single API interaction to consume significant server resources? Some examples
of this include launching subprocesses for each connection, or entity
expansion attacks in XML.

For more detailed guidance, please see the OpenStack Security Guidelines as
a reference (https://wiki.openstack.org/wiki/Security/Guidelines). These
guidelines are a work in progress and are designed to help you identify
security best practices. For further information, feel free to reach out
to the OpenStack Security Group at openstack-security@lists.openstack.org.

Notifications impact

Please specify any changes to notifications. Be that an extra notification,
changes to an existing notification, or removing a notification.

Other end user impact

Aside from the API, are there other ways a user will interact with this
feature?

	Does this change have an impact on python-novaclient? What does the user
interface there look like?

Performance Impact

Describe any potential performance impact on the system, for example
how often will new code be called, and is there a major change to the calling
pattern of existing code.

Examples of things to consider here include:

	A periodic task might look like a small addition but if it calls conductor or
another service the load is multiplied by the number of nodes in the system.

	Scheduler filters get called once per host for every instance being created,
so any latency they introduce is linear with the size of the system.

	A small change in a utility function or a commonly used decorator can have a
large impacts on performance.

	Calls which result in a database queries (whether direct or via conductor)
can have a profound impact on performance when called in critical sections of
the code.

	Will the change include any locking, and if so what considerations are there
on holding the lock?

Other deployer impact

Discuss things that will affect how you deploy and configure OpenStack
that have not already been mentioned, such as:

	What config options are being added? Should they be more generic than
proposed (for example a flag that other hypervisor drivers might want to
implement as well)? Are the default values ones which will work well in
real deployments?

	Is this a change that takes immediate effect after its merged, or is it
something that has to be explicitly enabled?

	If this change is a new binary, how would it be deployed?

	Please state anything that those doing continuous deployment, or those
upgrading from the previous release, need to be aware of. Also describe
any plans to deprecate configuration values or features. For example, if we
change the directory name that instances are stored in, how do we handle
instance directories created before the change landed? Do we move them? Do
we have a special case in the code? Do we assume that the operator will
recreate all the instances in their cloud?

Developer impact

Discuss things that will affect other developers working on OpenStack,
such as:

	If the blueprint proposes a change to the driver API, discussion of how
other hypervisors would implement the feature is required.

Implementation

Assignee(s)

Who is leading the writing of the code? Or is this a blueprint where you’re
throwing it out there to see who picks it up?

If more than one person is working on the implementation, please designate the
primary author and contact.

	Primary assignee:

	<launchpad-id or None>

	Other contributors:

	<launchpad-id or None>

Work Items

Work items or tasks – break the feature up into the things that need to be
done to implement it. Those parts might end up being done by different people,
but we’re mostly trying to understand the timeline for implementation.

Dependencies

	Include specific references to specs and/or blueprints in nova, or in other
projects, that this one either depends on or is related to.

	If this requires functionality of another project that is not currently used
by Nova (such as the glance v2 API when we previously only required v1),
document that fact.

	Does this feature require any new library dependencies or code otherwise not
included in OpenStack? Or does it depend on a specific version of library?

Testing

Please discuss the important scenarios needed to test here, as well as
specific edge cases we should be ensuring work correctly. For each
scenario please specify if this requires specialized hardware, a full
openstack environment, or can be simulated inside the Nova tree.

Please discuss how the change will be tested. We especially want to know what
tempest tests will be added. It is assumed that unit test coverage will be
added so that doesn’t need to be mentioned explicitly, but discussion of why
you think unit tests are sufficient and we don’t need to add more tempest
tests would need to be included.

Is this untestable in gate given current limitations (specific hardware /
software configurations available)? If so, are there mitigation plans (3rd
party testing, gate enhancements, etc).

Documentation Impact

Which audiences are affected most by this change, and which documentation
titles on docs.openstack.org should be updated because of this change? Don’t
repeat details discussed above, but reference them here in the context of
documentation for multiple audiences. For example, the Operations Guide targets
cloud operators, and the End User Guide would need to be updated if the change
offers a new feature available through the CLI or dashboard. If a config option
changes or is deprecated, note here that the documentation needs to be updated
to reflect this specification’s change.

References

Please add any useful references here. You are not required to have any
reference. Moreover, this specification should still make sense when your
references are unavailable. Examples of what you could include are:

	Links to mailing list or IRC discussions

	Links to notes from a summit session

	Links to relevant research, if appropriate

	Related specifications as appropriate (e.g. if it’s an EC2 thing, link the
EC2 docs)

	Anything else you feel it is worthwhile to refer to

History

Optional section intended to be used each time the spec is updated to describe
new design, API or any database schema updated. Useful to let reader understand
what’s happened along the time.

Revisions

 Index

 Navigation

 	
 index

 	nova-dpm 1.0.0.0rc3.dev3 documentation

Index

 Copyright 2016, OpenStack Foundation.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		nova-dpm 1.0.0.0rc3.dev3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

